
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

328

Charm FL: A Fault Localization Tool

Radha Mohan Acharya

 Aryan Institute of Engineering & Technology, Bhubaneswar

Abstract—Fault localization is one of the most time-consuming
and error-prone parts of software debugging. There are several
tools for helping developers in the fault localization process,
however, they mostly target programs written in Java and C/C++
programming languages. While these tools are splendid on their
own, we must not look over the fact that Python is a popular
programming language, and still there are a lack of easy-to-
use and handy fault localization tools for Python developers. In
this paper, we present a tool called “CharmFL” for software
fault localization as a plug-in for PyCharm IDE. The tool
employs Spectrum-based fault localization (SBFL) to help Python
developers automatically analyze their programs and generate
useful data at run-time to be used, then to produce a ranked list
of potentially faulty program elements (i.e., statements, functions,
and classes). Thus, our proposed tool supports different code
coverage types with the possibility to investigate these types in
a hierarchical approach. The applicability of our tool has been
presented by using a set of experimental use cases. The results
show that our tool could help developers to efficiently find the
locations of different types of faults in their programs.

Index Terms—Debugging, fault localization, spectrum-based
fault localization, Python, CharmFL.

I. INTRODUCTION

Software systems and applications cover many aspects of

our day-to-day activities. However, they are still far from

being free of faults. Software faults may cause critical unde-

sired situations including life loss. Therefore, various software

fault localization techniques have been proposed over the

last few decades including Spectrum-based fault localization

(SBFL) [1]. In SBFL, the probability of each program ele-

ment (e.g., statements) of being faulty is calculated based on

program spectra obtained by executing a number of test cases.

However, SBFL is not yet widely used in the industry because

it poses a number of issues [2]. One of such issues is that most

of the SBFL tools currently target programs written in C/C++

and Java. Thus, there is lack in SBFL tools that help developers

debug their programs that are written in other programming

languages including Python which is considered also as one

of the most popular programming languages.

In this paper, we present a tool called “CharmFL” as a plug-

in for the PyCharm IDE, a popular Python development plat-

form, to automate the software fault localization process. Our

tool utilizes SBFL to assist Python developers in automatically

analyzing their programs and producing useful data at run-time

that can then be used to generate a ranked list of potentially

faulty program elements. To determine whether a statement

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

329

is faulty or not, developers examine each statement in turn,

beginning at the top of the list (the most suspicious element).

Several experiments with Python projects were conducted to

assess the applicability of our tool. The results indicate that

the tool is useful for locating faults in various types of

programs and that it is simple to use.

The remainder of the paper is organized as follows. Sec-

tion II briefly introduces the background of SBFL and its

main concepts. Section III presents an overview of the most

related works. Section IV provides a theoretical overview

on the used techniques in our tool. Section V presents our

proposed software fault localization tool. Section VI

discusses the applicability of our tool in different practical

contexts. Finally, we provide our conclusions and possible

future works in Section VII.

II. BACKGROUND OF SBFL

Fault localization is a time consuming part of the software

debugging process, therefore the need for automating it is in-

credibly important. There are several approaches to

implement the process [3], however we focus on SBFL due to

its simple but powerful nature, i.e. using only code coverage

and test results. There have been several surveys written [3]–

[5] and various empirical studies [6], [7] performed on this

topic.

Fig. 1. SBFL process

Figure 1 shows the SBFL process. Using the program’s

spectra (i.e., program elements, per-test coverage, and test

results), SBFL can help the programmer to find the faulty

element in the target program’s code easier. The code

coverage matrix is a two-dimensional matrix used to

represent the relationship between the test cases and the

program elements, whose rows demonstrate the test cases

and columns represent the program elements. An element of

the matrix is 1, if it is

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

330

+

+

covered by test case, otherwise it is 0. In another matrix vector,

the test results are stored where 0 means the test case is passed

and 1 when it is failed. Using these matrices, the following

four basic statistical numbers are calculated for each program

element φ:

• φep: number of passed tests covering φ
• φef : number of failed tests covering φ
• φnp: number of passed tests not covering φ

• φnf : number of failed tests not covering φ

Then, our tool uses these four numbers with the formula in

Equation 1, Tarantula [8]; Equation 2, Ochiai [9]; Equation 3,

DStar [10]; Equation 4, Wong2 [11] to provide a ranked list

of program elements as an output. Whichever element ranked

the highest in the list, it is the most suspicious of containing

a bug.

 φef

static and dynamic slicing to formulate why and why not ques-

tions, which are then presented in a graphical and interactive

way to help developers in understanding the behavior of a

program under test. It also records program execution traces

and the status of each used class whether it is executed or

not. Using the tool also allows the user to load the execution

trace of a program and select a program entity at a specific

point during its execution. Then he or she can click on the

selected entity to bring up a pop-up window containing a

set of questions that include data values gathered during the

execution as well as information about the properties of the

selected entity.

Hao et al. [14] proposed an Eclipse plug-in tool called

“VIDA” for programs written in Java. The tool extracts

statements hit spectrum from the target programs, executes

JUnit tests and based on their results, it calculates suspi-

ciousness. It also provides a list of the ten most suspicious

statements as potential breakpoints. It displays the history

Tarantula =
φef +φnf

 φef φep

φef +φnf φep +φnp

φef

(1)
of breakpoints including the developers’ previous estimates
of the correctness of the breakpoint candidates as well as

their current suspiciousness. Moreover, it employs colors to

distinguish between the developers’ estimations, ranging from
Ochiai = √

(φef + φnf) ∗ (φef + φep)

 φef

(2) red (wrong) to green (correct), and suspiciousness, ranging

from black (very suspicious) to light gray (less suspicious).

And, it provides the users with the ability to extract static
dependency graphs from their programs to assist developers

Dstar =
φef +φnf

 φef φep

φef +φnf φep +φnp

(3) with their estimations and also to help them understand the

relationships among different program entities.

Janssen et al. [15] and Campos et al. [16] proposed a fault

Wong2 = φef − φep (4)

III. RELATED WORKS

There are many software fault localization tools imple-

mented and proposed in the literature. This section briefly

presents them. Jones et al. [8] proposed a standalone software

fault localization tool called “Tarantula” to help C program-

mers to debug their programs. The tool assigns different colors

to program statements based on how suspicious they are,

ranging from red (most suspicious) to green (not suspicious).

Besides, the tool displays varying brightness levels based on

how frequently the tests execute a statement. The brightest

statements are those that are most commonly executed. How-

ever, the tool does not run test cases and record their results;

it takes as input a program’s source code and the results of

executing a test suite on the program. Furthermore, the tool’s

only supported metric is the Tarantula metric.

Chesley et al. [12] proposed an Eclipse plug-in tool called

“Crisp” that helps developers identify the reasons for a failure

that occurs due to code edits by constructing intermediate

versions of a program that is being edited. For example, if

a test case fails, the tool will identify parts of the program

that have been changed and caused the failing test. Thus,

developers can concentrate only on those affecting changes

that were applied.

Ko and Myers [13] proposed a standalone debugging tool

called “Whyline” for Java programs. The tool employs both

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

331

localization tool that adopts SBFL and it is available as a

command-line tool called “Zoltar” and as an Eclipse plug-in

called “Gzoltar”. The tool provides a complete

infrastructure to automatically instrument the source code of

the programs under test in order to generate runtime data,

which is then used to return a ranked list of faulty locations.

It also uses colors to mark the execution of program entities

from red to green based on their suspiciousness scores. The

tool only employs the Ochiai metric to compute

suspiciousness.

Wang et al. [17] proposed a fault localization tool called

“FLAVS” for developers using Microsoft Visual Studio plat-

form. The tool provides an automatic instrumentation mech-

anism to record program spectrum information during the

execution. It also provides a user with two options either

automatically or manually to mark the result of each used test

case; whether it is successful or not. Additionally, it monitors

each test environmental factors of the running program such

memory consumption, CPU usage, and thread numbers. For

example, the developer can notice that there is something

wrong when the CPU time drops to zero and never gets

increased again during the running of a test case. The tool

provides different levels of granularities for fault localization

analysis such as statement, predicate, and function. Using the

tool allows the users to examine the correct positions in the

source code files by clicking on the suspicious units,

which are displayed and highlighted in different colors

also. The functionalities of “FLAVS” have been extended

by Chen and

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

332

Wang [18] in another tool called “UnitFL”. The tool uses pro-

gram slicing to decrease the program execution time. Besides,

it provides different levels of granularities for fault localization

analysis to provide different aspects of execution during the

program analysis. And, it shows fault-related elements with

different colors based on their suspiciousness; ranging from

green to red.

Ribeiro et al. [19] proposed a SBFL tool called “Jaguar” for

Java developers. The tool supports two advanced spectra types

which are control-flow and data-flow. Also, it visualizes suspi-

cious program elements where the user can easily inspect sus-

picious methods, statements, or variables. Although the data-

flow spectrum provides more information, it is not adopted

widely in SBFL because of the high costs of execution.

To overcome this issue, the tool utilizes a lightweight data-

flow spectrum coverage tool called “ba-dua”. This enables the

tool to be used for testing large-scale programs at affordable

execution costs. The tool can be used as an Eclipse plug-in or

as a command-line tool.

All the previous tools target programs written in Java and

C/C++ programming languages. Tools for helping Python

developers in their debugging process have not been previously

proposed in the literature by other researchers. However, two

open-source fault localization tools for Python’s pytest test-

ing framework are available, namely, Fault-Localization [20]

and PinPoint [21]. In this paper, we propose a tool called

“CharmFL” with more features to target programs written

in Python; which is considered one of the most popular

programming languages nowadays. Compared to the other

two tools, our proposed tool supports different types of code

coverage (i.e., class, method, and statement), displays the fault

localization results in different ways, provides a graphical user-

friendly interface to examine the suspicious elements, and

enabling the user to smoothly examine any suspicious element

via clickable links to the source code. Table I summarizes the

features of our proposed tool compared to the others.

TABLE I

COMPARISON AMONG PYTHON FAULT LOCALIZATION TOOLS

Features Fault-Localization PinPoint CharmFL

Statement hit coverage Yes Yes Yes

Method hit coverage No No Yes

Class hit coverage No No Yes

Supported SBFL metrics 1 5 4

Shows ranking Color-based Value-based list Both

Shows suspicious scores Yes No Yes

Ties ranking No No Min, Max, or Average

GUI interface No No Yes

Command-line interface Yes Yes Yes

Elements investigation Flat Flat Hierarchy

Elements navigation No No Via clickable links to each el-
ement in the source code

Tool type Option for pytest framework Option for pytest framework Plug-in for PyCharm IDE

Current version 0.1.6 0.3.0 0.1

IV. METHODOLOGY

In this section, we give a theoretical overview on the used

techniques in our tool. We will use an example project for

demonstration purposes. The selected project has four methods

as shown in Figure 2 and four test cases to test them as shown

in Figure 3. For simplicity, we will represent the four test cases

through the paper as T1, T2, T3, and T4 according to their

order in the figure.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

333

Fig. 2. Running example – program code

Fig. 3. Running example – test cases

Our tool provides the opportunity to measure

statement, method, and class coverage levels. This is achieved

by employ- ing the “zooming in/out” hierarchy approach,

where the user can examine the suspicious elements from

the highest level in the hierarchy (i.e., classes) to lower levels

in the hierarchy and repeat the steps above, until s/he reaches

the lowest level, which is the statements level. This is better

than only one level of granularity as the developer can

exclude methods or even classes from the ranking list, thus

saving time spent on the debugging process.

We can see in this example that the highest granularity is

method level; in this case, the class level coverage is absent.

Table II presents the method level coverage matrix, and the

basic statistical numbers. Running any SBFL algorithm, e.g.

Tarantula, we get a list of elements with suspiciousness

scores as presented in Table III. For the lack of space, we will

not show the statement granularity, but the overarching

principle is the same; we investigate the elements with highest

scores until we find the bug. We can see that the “addToCart”

method has the highest score according to Tarantula. Using

the “zooming in/out” technique, we need to investigate

the statements in

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

334

the “addToCart” method first. This saves the developers time

since they do not have to go through all the statements in the

suspicousness list.

TABLE II

METHOD HIT SPECTRUM (WITH FOUR BASIC STATISTICS)

 T1 T2 T3 T4 ef ep nf np

addToCart 1 1 1 1 2 2 0 0

removeFromCart 0 1 1 0 1 1 1 1

printProductsInCart 0 0 0 0 0 0 2 2

getProductCount 1 1 1 1 2 2 0 0

Test results 0 0 1 1

TABLE III
TARANTULA SUSPICOUSNESS SCORES

Method Score

addToCart 0.58

removeFromCart 0.41

printProductsInCart 0.00

getProductCount 0.48

V. CHARMFL TOOL

In this section, we give an overview about our tool’s archi-

tecture, data processing, and user interface. Our tool can be

divided into two parts; front-end and the back-end framework.

The first part is the actual plug-in for the PyCharm IDE, which

the user can interact with and use during debugging. We detail

this part in Section V-A. The second part is a framework

that gives the opportunity for developers to integrate fault

localization in other IDEs. We give details on its architecture

and usage in Section V-B.

A. GUI

The front-end part of the tool, shown in Figure 4, is an IDE

specific plug-in using the CharmFL engine for the PyCharm

IDE. After installing the plug-in and opening the Python

project in the IDE, the user can run the fault localization

process to get the list of program suspicious elements.

Fig. 4. CharmFL GUI

Additionally, the corresponding program elements are high-

lighted with different shades of red color based on the suspi-

cious scores as shown in Figure 5. The darker the color is, the

most suspicious the element is. If the user accidentally closes

the results table, s/he can reopen it again by clicking on the

View button in the CharmFL menu.

There is a set of advanced options for researchers too

which appears via clicking the Options button of the menu

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

335

Fig. 5. Highlighted statements based on suspicious

scores

as shown in Figure 6. Such options enable them to

select different metrics for comparison and to apply different

tie- breaking techniques to the elements sharing the same

score in the ranking list.

Fig. 6. CharmFL advanced options

When the user selects multiple metrics, there will be a

table for each metric, that way they can compare the

elements side- by-side. This is especially good for

researchers who would like to compare the efficiency of the

supported SBFL metrics. The SBFL results table (Figure 7)

shows the program elements hierarchically, next to them

there are their positions in the source code, their ranks,

and their scores. Also, the Action button can be used to

hide/show the elements inside each level of the hierarchy

or to jump on a specific element

via clicking on its corresponding document icon.

Fig. 7. CharmFL rankling list output

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

336

B. Framework’s Architecture

This is the part of the tool where we gather and process the

coverage and test result data. The framework can be used as a

stand-alone tool or integrated in other IDEs too as a plug-in.

In order to collect the program’s spectra, code coverage

measurement is needed. To obtain the code coverage, the target

program needs to be instrumented. For this purpose, our tool

uses the popular coverage measuring tool for Python, called

“coverage.py” [22]. This tool can measure on either statement

or branch coverage levels, however in its current format it

is not able to measure method or class coverage levels. Our

framework transforms the statement level to method and class

levels as shown in Figure 7. This is achieved by putting all the

statements of each function under the corresponding function’s

name and then putting all the functions of each class under the

corresponding class’s name. Thus, each function will has its

own set of statements and each class its own set of functions

including the statements. Afterward, the classes are sorted

based on their suspiciousness scores, then the functions, and

finally the statements. For example, the statement at line 37

will not be examined before the statement at line 8 because

the latter is belong to a function of higher rank in the ranking

list. This hierarchical coverage feature gives additional useful

information about the suspicious scores on all layers to the

user. They can exclude whole methods or even classes based

from the list.

Additionally, in order to make the coverage matrix, we

used the “.coveragerc” file where the user can configure the

measurement. After collecting the coverage report, we run tests

using “pytest” [23] to fetch the results. Having those collected,

we make coverage and test results matrices according to Jones

et al. [8] from the raw data. Afterward, the tool calculates the

suspiciousness score for each program element based on the

equations as described in Section II. The framework provides

class, method, and statement coverage levels; test results;

coverage matrix and the hierarchical “ranking list”. Figure 8

lists the usages of the framework.

Fig. 8. Framework usage

VI. POTENTIAL USE CASES

When programmers face bugs in their Python programs,

they have a couple of directions to go with in the debugging

life-cycle. In order to find the bug, they can either run the test

suite to figure out which test is failing and go from there, or

they can inject break points in the code to investigate each

value while pausing the program execution.

In this section, we will show three ways of how to use our

tool in various phases of the debugging, as follows:

1) Running the test suite, then start the CharmFL tool.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

337

2) Running the test suite, inject break points and then

start the CharmFL tool.

3) Running the CharmFL tool, then inject break points.

For each scenario, we start from the point when the exis-

tence of the bug was first detected, i.e. someone reported the

bug while using the software. For demonstration purposes,

we will use a simple example project; but also any other

Python project can be used. The example project has four

methods, and four test cases that cover 90% of the program.

We injected an artificial bug, in the 11th line, so two of the

four test cases would fail. Our tool is successful if the 11th

statement is in the top-10 of the list of suspicious elements,

and the debugging is successful if the test cases pass after

the bug is fixed.

First, we demonstrate the usage of our tool after

running the test suite. Having done that, we get from pytest’s

report that there are two failing test cases. We open the test

files, meanwhile we start the CharmFL tool. Reading the

pytest’s test results report, we can see that there are two

failing test cases. Additionally, we can see that in the test

cases the method “addToCart” is called two times and the

“removeFromCart” is called once. Hence, we start with the

examination of the “addToCart” method. When we

investigate the method we can see that there are three

statements. At this point, we start the CharmFL tool and use

it to decide which statement to investigate first. We click on

the first element in the method with the highest score in the

list of suspicious elements and try to fix the bug in the

statement. We run the test cases again and see that all test

cases pass. In this scenario, our tool helped deciding which

statement should be investigated first, hence saving time on

debugging.

Second, we use our tool with a bit more advanced

debugging technique; break-point oriented debugging. The

PyCharm IDE has a built-in debugger, which is the best

option to use alongside our tool. First, we run the tests and

investigate the failing ones similarly like in the previous

scenario. Again, we have two failing test cases that cover the

“addToCart” and “removeFromCart” methods. Then, we

insert break points to those lines that are covered by the

failing test cases. Next, start the debugging session to

investigate what values do the variables take and what is

not going according to the plan. Meanwhile, we start the

CharmFL tool to get the most suspicious elements. We can

see in Figure 5 that the 11th statement in the example.py file

is dark red, which is very suspicious. We fix the bug in the

statement, then verify the fix by running the tests again. We

can conclude from this scenario, that checking against the

suspiciousness list can help the programmer a lot with the

debugging.

The final scenario, we start the CharmFL tool before doing

any debugging. In this scenario, we start the tool then look at

the list of suspicious elements.

Developers tend to investigate only the first ten (also re-

ferred to as top-10) elements in the ranking list because after

that, they start to lose interest in using the tool [24], [25].

Therefore, a fault localization algorithm is successful if it can

fit as many faulty elements in the top-10 list as possible.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

338

Using this technique, we look at and click on the element

with the highest score in the suspiciousness list table shown in

Figure 7. The tool then redirects us to the statement we want to

investigate. The background color refers to the suspiciousness

level, i.e. how likely the statement is to contain a fault, the

darker the color the higher the suspicion is. We can see in

Figure 5 that the statement has a dark red background, mean-

ing it is the most likely to contain a bug. When investigating

the element we can use break-point-based debugging. Without

running the test cases, we can place a break-point to the

statement we clicked on. We fix the statement and run the

tests for verification. This scenario takes a few more extra

steps. However, this is a helpful guide when the test cases are

well defined and maintained. In this case, our tool can reduce

the excessive time and energy that would have been spent on

debugging.

VII. CONCLUSIONS

This paper describes “CharmFL”
1
, an Open-source fault

localization tool for Python programs. The tool is devel-

oped with many interesting features that can help developers

debugging their programs by providing a hierarchical list

of ranked program elements based on their suspiciousness

scores. The applicability of our tool has been evaluated via

different use cases. The tool has been found to be useful for

locating faults in different types of programs and it is easy

to use. For the future work, we would like to implement

interactiveness to enable the user to give his/her feedback on

the suspicious elements to help re-rank them, thus improving

the fault localization process. Also, we would like to add other

features such as displaying the tool’s output using different

visualization techniques. Finally, assessing the tool with real

users and in real-world scenarios would be a valuable next

step too.

ACKNOWLEDGEMENTS

The research was supported by the Ministry of Innovation

and Technology, NRDI Office, Hungary within the framework

of the Artificial Intelligence National Laboratory Program, and

by grant NKFIH-1279-2/2020 of the Ministry for Innovation

and Technology. Qusay Idrees Sarhan was supported by the

Stipendium Hungaricum scholarship programme.

REFERENCES

[1] C. Gouveia, J. Campos, and R. Abreu, “Using html5 visualizations
in software fault localization,” in First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1–10.

[2] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges,”
pp. 1–46, jul 2016. [Online]. Available: http://arxiv.org/abs/1607.04347

[3] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey
on Software Fault Localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, aug 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7390282/

[4] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for
software systems: A Literature Review,” ACM SIGSOFT Software
Engineering Notes, vol. 39, no. 5, pp. 1–8, sep 2014. [Online].
Available: https://dl.acm.org/doi/10.1145/2659118.2659125

1https://sed-szeged.github.io/SpectrumBasedFaultLocalization/

http://arxiv.org/abs/1607.04347
http://ieeexplore.ieee.org/document/7390282/

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

339

[5] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and
Challenges,” pp. 1–46, jul 2016. [Online]. Available:
http://arxiv.org/abs/1607.04347

[6] J. Kim and E. Lee, “Empirical evaluation of existing algorithms
of spectrum based fault localization,” in The International
Conference on Information Networking (ICOIN). IEEE, feb 2014, pp.
346–351. [Online]. Available:
http://ieeexplore.ieee.org/document/6799702/

[7] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 332–347,
2021.

[8] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
informa- tion to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering (ICSE), 2002, pp.
467–477.

[9] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in 2006 12th Pa-
cific Rim International Symposium on Dependable Computing
(PRDC), 2006, pp. 39–46.

[10] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION (TAICPART-MUTATION 2007), 2007, pp. 89–98.

[11] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault
localization using code coverage,” in 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007),
vol. 1, 2007, pp. 449– 456.

[12] O. C. Chesley, X. Ren, B. G. Ryder, and F. Tip, “Crisp - A fault local-
ization tool for Java programs,” Proceedings - International
Conference on Software Engineering, pp. 775–778, 2007.

[13] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior,” Proceedings
- International Conference on Software Engineering, pp. 301–310,
2008.

[14] D. Hao, L. Zhang, T. Xie, H. Mei, and J. S. Sun, “Interactive Fault
Localization Using Test Information,” Journal of Computer Science
and Technology, vol. 24, no. 5, pp. 962–974, 2009.

[15] T. Janssen, R. Abreu, and A. J. Van Gemund, “Zoltar: A spectrum-
based fault localization tool,” SINTER’09 - Proceedings of the 2009
ESEC/FSE Workshop on Software Integration and Evolution at
Runtime, pp. 23–29, 2009.

[16] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse
plug-in for testing and debugging,” 2012 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2012 - Proceed- ings, pp. 378–381, 2012.

[17] N. Wang, Z. Zheng, Z. Zhang, and C. Chen, “FLAVS: A fault localiza-
tion add-in for visual studio,” Proceedings - 1st International
Workshop on Complex Faults and Failures in Large Software Systems,
COUFLESS 2015, pp. 1–6, 2015.

[18] C. Chen and N. Wang, “UnitFL: A fault localization tool
integrated with unit test,” Proceedings of 2016 5th International
Conference on Computer Science and Network Technology, ICCSNT
2016, pp. 136– 142, 2017.

[19] H. L. Ribeiro, H. A. De Souza, R. P. A. De Araujo, M. L.
Chaim, and F. Kon, “Jaguar: A Spectrum-Based Fault Localization
Tool for Real-World Software,” Proceedings - 2018 IEEE 11th
International Conference on Software Testing, Verification and
Validation, ICST 2018, pp. 404–409, 2018.

[20] “Fault-localization tool,” https://pypi.org/project/fault-localization/, ac-
cessed: 01-06-2021.

[21] “Pinpoint tool,” https://pypi.org/project/pytest-pinpoint/, accessed: 01-
06-2021.

[22] “Coverage.py tool,” https://coverage.readthedocs.io/en/coverage-5.5/,
accessed: 01-06-2021.

[23] “Pytest tool,” https://docs.pytest.org/en/6.2.x/, accessed: 01-06-2021.
[24] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on

automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p. 165–
176. [Online]. Available: https://doi.org/10.1145/2931037.2931051

[25] X. Xia, L. Bao, D. Lo, and S. Li, “Automated debugging considered
harmful: A user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large
systems,” in 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2016, pp. 267–278.

http://arxiv.org/abs/1607.04347
http://ieeexplore.ieee.org/document/6799702/

